
A-AL03 113 KANSAS STATE NV MANHATTAN DEPT OF COMPUTER SCIENCE F/6 9/2
RESEARCH IN FUNCTIONALLY DISTRIBUTED COM4PUTER SYSTEMS DEVELOPE--ETC(U)
DEC 76 P S FISHER, F J MARYANSKI DAA$29-76-0108

R. SlEN

EEEEEmmEEEmmmE*uhhhhhhuuuuu;1,

'LEVEL " __

AIRMICS Army Institute tor Research in 313 Calculator Bldg.
Management Information and GA Institute of Technology
Computer Science Atlanta, GA 30332

Technical Report

RESEARCH IN FUNCTIONALLY
-DISTRIBUTED COMPUTER

SYSTEMS DEVELOPMENT

Kansas State University

Virgil Wallentine

Principal Investigator T1C
ELECTE

SAUG 20 1981

Approved for public release; distribution unlimited

VOLUME VII

A USER--TRANSPARENT MECHANISM FOR THE
DISTRIBUTION OF A CODASYLkDATA BASE MANAGEMENT SYSTEM

U.S. ARMY COMPUTER SYSTEMS COMMAND FT BELVOIR, VA 22060

I ' - " -"7I'

0.j

*SECUR,-iY CLASSIFICATION OF THIS PAGE mn n Fnteredj

REPORT DOCUMENTATION PAGE BEFORE COMPLETING F~ORM

(LOR .. .;$IO N. rIET CTAOGNUBE

~I4 MOITRIN AENC NME ADRES(I dffeen trt, Cotrfli ffie) 1. SECU F PRIT CLSS PRO D l Ver

kF 1. , 2O6''A.Bvir VAER-TRAN5P. DECLASSIFICATIONR DOWNGRADING

1.DSBUION ST ATMN (ofSY thi Iteri

17. OITRIUTON TA EME T of heAbtA e BAEte d MAN GE EN Blc §0, YSifeeT fEM ,Rp

IC~rC SUPPLRMENTARYBEOTE)

Department of thper pSitince ness eintd yohratoie

U.NYWS r Reo earh Ofie fce'- neeceye11d1tf7b6loknubr

14. MONTRC G AGNt CY NAM &e e Ad Re SSI diferen fro nt rolliby b O fcmer) 1.SC RT LS.CtCi eot

(~ ~ U Arm Copue Sy473m CDTO F O 55ommand Unclassified
AttCnI: CLSATaICSICATION DISPO WNGRADIN

Ft_____r V 20 SCHEDL
16.ITIUIO1TTM N ofti sor

UNC 1.AS S§H±Da.
SECURITY CL AAiVICATION OF TIS pACE(When Data Cntared)

-ABSTRACT-

'A software organization is presented to provide for

data definition and manipulation in a distributed data base
management system. With the mechanism for distributing the

data base proposed here, the physical location of the data

is transparent to the user program. A Device Media Control
Language is specified for the assignment of control of and
access to a data base area to a set of processors.
Procedures for reassignment of the control and access
functions as well as the transfer of data between processors

are provided. The basic hardware and software requirements
tc.r a computer network capable of supporting a distributed
data base management system are discussed along with a
specification of the software required for a processor in a
distributed data base network.

U14CLASSIV IED

tel'

A User-Transparent Mechanism

for the Distribution of

a CODASYL Data Base Management

System

TR CS 76-22

December, 1976

Fred J. Maryanski
Paul S. Fisher

Virgil E. Wallentine

Accession For

NTIS GRA&I
DTIC TAB El
Uannounced
JuSti icatlo-

By .
Distri-butlon/

Avallability Codes
Avail. and/o-

Dist Special

The work reported herein is supported by the U.S. Army
Research Office Grant No. DAAD-29-76-G-0108.

__ _ _ _ _ __ _ _I i

I!

Abstract

A software organization is presented to provide for data definition

and manipulation in a distributed data base management system. With the

mechanism for distributing the data base proposed here, the physical

location of the data is transparent to the user program. A Device

Media Control Language is specified for the assignment of control of

and access to a data base area to a set of processors. Procedures for

reassignment of the control and access functions as well as the transfer

of data between processors are provided. The basic hardware and soft-

wire requirements for a computer network capable of supporting a distributed

data base management system are discussed along with a specification of

thu software required for a processor in a distributed data base network.

4 A
it

I

I. Introduction

This paper presents a software organization for a distributed data

base management system (DDBMS). A DDBMS is a data base management system

that resides on a network of computers. The processors in the network may

perform any combination of the three following functions.

a. Front-end = act as user interface, receive input, transmit output.

b. Host = execute the application program.

c. Back-end = control data base access through execution of data

base system software.

The DDBMS software structure presented in this paper reflects the

CODASYL-type data base systems [1,2]. The basic software distribution and

s, veral possible hardware configurations for DDBMS systems are discussed

In Reference [3]. The emphasis of this paper is to specify the software

fuijctions that are required in order to provide for proper data definition

and manipulation in a DDBMS.

One of the principle tenets of the proposed DDBMS organization is that

'Ac physical distribution of the data be transparent to the user. This

imp~ies that at the application program level, both the program and the

z, r are unconcerned with the precise physical location of the data or of

thi processor that is accessing the data. In addition, the DDBMS must have

rapaoility of moving data among secondary storage devices and DBMS

finctions among processors. However, the user may stipulate that units

-f dLita be physically close. Additionally, it is necessary for the system

.-.(ftw.re to be portable in order for an application program to execute on

:yi,' host machine and access data through any back-end processor. This

ability, to request relocating of tasks and data, is partially within the

x_

2

DDBMS, but as with all application software, allocation of resources is

dependent on the network operating system (NOS) upon which the DDBMS is

constructed (in this paper it is supported by an NOS subsystem called

Network Resource Control (NRC)). Information on the characteristics of

a network operating system capable of supporting a DDBMS can be obtained

in Reference (4).

The remaining sections of this paper contain a set of proposed mech-

anisms for defining and utilizing data in a DDBMS which has the capabilities

described in the preceding paragraphs.

A . .. ,~

It. Data Definition

In a CODASYL-type DBMS the description of the data is carried out

in three steps. Initially, the schema Data Description Language (DDL) is

used to describe the logical organization and format of the data base.

That portion of the data base accessible to a particular program is defined

by means of ;he sub-schema DDL. The schema and sub-schema are both logical

descriptions of the data. The logical to physical mapping is accomplished

through use of the Device Media Control Language (DMCL). It is important to

note that the CODASYL committee contidered the DMCL as an implementation-

dependent feature of a DBMS and consequently, has not specified a DMCL. It

is through the DMCL that the distribution of the data base is accomplished.

In the definition of a distributed data base (as in the case of a

central system) the existence or lac): of physical proximity of records is

determined by their placement in areas. Areas serve as the atomic data unit

in terms of the distribution of the data base. The DMCL is used to associate

areas with both logical back-end processors and secondary storage devices.

This information is compiled from the DHCL and stored in the Area Logical

Location (ALL) Table. The system may transport areas between physical

devices. Such actions would remain transparent to the DBMS application

programs provided the ALL tables and the tables of contents of the actual

disk cartridges indicating, respectively, the physical location of the area

and the contents of the cartridge ate properly updated.

By restricting the effects of transparency to the description of the

areas in the DMCL, both the schema and sub-schema DDL's remain unchanged In

a DDB1S. The syntax of a DMCL for a dLstributEd CODASYL-type data base

system is shown in Figure 1.

The PACE NLMBER and SIZE sentences in the Area Section are used to

.9i

. SCHEMA SECTION

DMCL FOR SCHEMA. B:. ,

SUBSCHEMA SECTION

SUBSCHEMA IS SUBSCHEMANAME.

AREA SECTION

AREA IS ThAtM.

NUMBER OF PAGES IS INEGER1.

PAGE SIZE IS INTEGER2.

BACKEND IS PROCESSORNAME,

DEVICE IS tv.c.FAtE.,

(TYPE IS IDENTIFIER.)

HOSTS ARE (PROCESSORNAME-S).

FIGURE 1

DMCL SYNTAX

describe the size of the area. The BACKEND sentence provides a logical

name for the processor which controls access to the area. The DEVICE

sentence provides a logical name and physical type for the device upon

which the area is to be stored. A physical type can include disk, tape,

cassette,.floppy disk, or any other mass storage medium. The physical

device type name can be dependent upon the back-end processor or (preferrably)

follow a standard network convention. The HOSTS sentence logically names

processors which may contain application programs that access the data in

the area being described.

The HOSTS sentence provides an additional measure of security to the

DDBMS. The data base administrator can specify if the area may be accessed

globally or restricted to a certain application system. It is important

to note that the HOSTS are identified logically in the DMCL. The HOSTS

sentences are specifications as to which application function may access

the data in an area. This application function may reside on several

distinct processors and may be moved among processors by the network oper-

ating system. However, unless the data base administrator assigns a logical

function name that appears in the HOSTS sentence of an area to a physical

processor, no program executing on that processor may access data in that area.

The product of a DMCL compilation is an ALL Table whose entry format

is depicted in Figure 2. An ALL Table is maintained for each schema. Within

the table the information is grouped by area. The area information is obtained

directly from the DMCL code.

It should be noted that processors and devices are identified logically

in the ALL Table.. This allows areas and tasks to change their physical

location in a manner transparent to the DBMS. The logical-to-physical mapping

for processors is maintained in the network operating system nucleus on each

machine. The companion mapping for devices is maintained locally at each

-j

CLi

C/) CiL

-JJ

UI-

LU 0
LI-

LNJ >- i~

L.O C/) I-- I-

o LI) w
LL.. P c

U--c

z

(-j3

C/l)

74

network node. Figure 3 illustrates the ALL Table and logical-to-physical

map for a sample distributed data base.

III. Data Manipulation in Distributed Data Access

The mechanisms for data manipulation in a DDBMS can be presented by

considering the steps that are required for a user program to access data

on a device connected to another processor.

Before an application program can access data in an area, it must first

issue a READY statement (1] for that area. The data base system obtains the

logical back-end processor and device name from the ALL Table entry of the

area named in the READY statement. The physical processor name is obtained

from Logical-to-Physical Processor Map maintained by the network operating

system. A message is then sent to the back-end processor requesting that

the area be made available to the application program and that a task be

created for that sub-schema (if one does not already exist). The general

format of the messages sent in the DDBMIS is given in Figure 4. If the device

containing the area is online at the back-end processor and all integrity

and security requirements are satisfied, the back-end transmits a message to

the host processor and the application program may begin to utilize the data

in that area.

There are several situations which can hinder the completion of the

READY statement. FLrst, we treat the problem of the device(s) containing

the area not being online. In this case, a message is transmitted to the

operator of the back-end processor, requesting mounting of the proper disk

pack. The pack is identified by the name obtained from the ALL Table. When

the pack is placed online, the data base system automatically verifies its

name against that requested by the application to detect any possible oper-

ator errors. Each data base contains a header which indicates the logical

DATA BASE (PK PROCESSOR, A K -AREA)

ALL TABLE (PARTIAL)

AREA BACKEND HOSTS PTR

Ao B0
Ai J B ALL -- 0 H2J
A3 B1
A-2B
A3 B

LPP W LOG ICAL NAME PHYSICAL ID

B0 P0
B1 P1
B2 P1
B3 P2

NJ P1
N2 P0

FIGURE 3 SAMPLE-DiSTRIBUTED DATA BASE

1' 9
SEND MESSAGE (TOID, MESSAGE, SIZE, EVTID)
WHERE

TOID IS THE SYMBOLIC NAME OF THE TASK WHECH
IS TO RECEIVE THE MESSAGE.

MESSAGE SPECIFIES THE BEGINNING ADDRESS OF THE
MESSAGE TO BE SENT.

SIZE SPECIFIES THE SIZE OF THE MESSAGE TO BE
SENT,
I EVTID IS AN EVENT UNIQUELY IDENTIFIED WITH THIS
MESSAGE.

RECEIVE MESSAGE (FROMID, MESSAGE, EVTID, SIZE)
WHERE

FROMID IDENTIFIES THE NAME OF A TASK FROM WHICH
A MESSAGE IS TO BE RECEIVED.

EVTID, SIZE, AND MESSAGE ARE AS BEFORE.

WAIT (EVT_ID)
WHERE

EVTID IS AN EVENT WHICH IS SET TO "HAPPENED"

WHEN ITS ASSOCIATED OPERATION IS COMPLETE. IT ALLOWS

PROCESSES TO SUSPEND AWAITING PARTICULAR OPERATION.

SEND_COMMAND (TOID, COflMAMD, EVT_If)

ACCEPTCOMMAND (FROMID, COMMAMD, EVTID)
WHERE COMMAND IS A FIXED SIZE (SMALL) MESSAGE

CONNECT (TOID, COMMAND)

DISCONNECT (FROMID, TYPE)
WHERE

TIMMEDIATE, ABOUT ALL ACTIVE MESSAGES
TYPE QUIESCE, ALLOW ACTIVE MESSAGES TO BE

SENT BUT NO MORE INITIATED

FIGURE 4
CONCEPTUAL MESSAGE FORMATS

107

(back-end) processors capable of accessing its data. This feature is included

for security purposes. If the processor names correspond, the back-end pro-

cessor will notify the host processor that the area is available for data

manipulation.

Another problem occurs when there is no entry in the Logical-to-Physical

Processor Map for the back-end processor name obtained from the ALL Table.

In this case the host processor must obtain from the Data Dictionary a

list'of processors that have the potential of operating under that logical

back-end name. Messages requesting, that a back-end processor assume the

functions associated with that logical name are then transmitted to the proces-

sors in that list. Once a back-end is identified, a request is made to

mount the appropriate device for the area being READYed. If no machine can

assume the requested logical processor role, the application program on the

host processor is terminated.
When a processor assumes a back-end function, a task must be created

in that processor to handle the data base requests for that area. All other

processors in the network then are notified of the new logical name for the

processor.

Once the area has been READYed, the user program on the host machine

may issue D[L commands to reference the data. 'The area name for any

record to be accessed by the DML commands is available in the sub-schema

which is attached to the application process during process initiation.

Using the area name, the physical location of the record in the network can

be determined from the ALL Table, the host machine then transmits a message

to the appropriate back-end processor which performs the DBMS operation and

transmits the results back to the host processor via the message system.

In a CODASYL-type DBMS, it is possible that an operation on a record in

one area may result in the need for operations on records in other areas

_ J

11

(for example, the removal of an owner record and thus all its members from

the data base). In such situations, the back-end processor controlling the

operation determines the back-end processor name for the effected are*

from the ALL Table. If the processor names are different, a message

indicating the necessary data base action must be sent to the back-end

processor of the area. This procedure could reoccur several times before

nompletion of the original DBIS operation, depending upon the complexity

and distribution of the data base. When the original back-end processor

has received completion messages from all of the secondary back-end

machines, it then transmits a message with the appropriate data and status

information to the host computer.

IV. Task and Data Movement

A. Conceptual Aspects

In a DDBMS, it may be desirable for reasons of efficiency or security

to change the physical location of a data base management task or data

area. Movement of data can occur either logically by a programmed (file)

transfer of an area between storage devices or physically by an operator

moving a storage device from one computer to another. Tasks are moved in

& DDBHS by making use of features provided in a network operating system.

The case of logical data movement will be cobsidered first. When an

area is moved between devices controlled by the same back-end processor, the

device name must be modified in the ALL Table of that back-end processor

and the header record on the storage media must be updated. Movement

between devices attached to different processors requires updating the ALL

Tables for all back-end processors that control any portion of the sub-schemas

containing the transported areas. It can be seen from the description of data

manipulation in Section III that if the ALL Tables are properly updated, there

will be no effect on either the user program on the host or the data base

4

12

system on the back-end machine.

The logical movement of an area is accomplished via network operating

system utility programs, U and. Ur. executing on B., the sending back-end

processor, and Br, the receiving back-end processor, respectively. The

following procedure is executed to move area A from B to B .

Procedure I (Logical Area Hovement)

Let SST be the set of the sub-schema: tasks for all sub-schemas containing
a

area A.

1. U notifies all tasks in SST on B that A will be moved.8 a 5

2. Al1 tasks in SST will notify the message utility not tc accept anya

further message for DML's in area A.

3. The message system on B instructs the message utility on all hosts

accessing this area that any DXL messages referring to A are held in the

host machine by the message utility..

4. Each task in SST aill notify U when all DML's for A are complete.a •

5. U sends a message to U indicating that A is ready to be moved.sr

6. 0 8writes A onto secondary storage thus placing the latest version

of A onto disk.

7. A is transferred from secondary storage of B to secondary storage
5

of B .
r

8. If for any sub-schema A was the only area controlled by B, then Us

must remove the entries for that sub-schema from the ALL Table maintained by Bs.
s

9. If for any sub-schema task SST A was the only area controlled by Bs,

aathen the task for that sub-schema must be destroyed on Ba

10. If A is the only area for a given sub-schema on Br, then Ur must

update the ALL Tables of B to include the entries for that sub-schema.r
11. Any sub-schema tasks on B destroyed by the movement of A must be

5

13

created (if not already present) on B.

12. If by receiving A, Br is now assuming a new logical back-end function,

then the L-P-P Map on B must be updated.

13. If by sending A to B8, B no longer retains that particular back-end

function, then the L-P-P Map on B must be updated.

14. Update all L-P-P Maps in the network if necessary.

15. The sub-schema tasks in SST on B obtain the list of hosts for A

ftom the ALL Table.

16. The sub-schema tasks in SST notify the message utilities which are
a.

queueing requests from their corresponding host tasks that they will now

accept DML messages for A.

Figure 5 gives a precedence graph for Algorithm 1. The interaction

of the utility tasks and system software resulting from the execution of

Procedure 1 is illustrated in Figure 6. Only the software directly involved

in logical area movement is pictur2d in Figure 6.

The situation in which a physical device is moved is more complex

than logical movement. The most difficult situation occurs if the pack

(or any other type of storage device) is active on a back-end processor and

the operator indicates to the system the desire to remove that pack from

online status. The data base management software'on the back-end processor

must complete all requests to areas on that pack and inform the effected

hosts to hold all new requests for those areas. The operator may then

disengage the pack and remount it on a new machine. When the pack is

mounted on the new machine, the procedure outlined in Section III for bringing

ap a new pack in the DDBMS can be followed. It is important to note that in

order for a processor to be eligible to receive the transferred pack, it must

be read and write compatible with the source processor as well as have the

necessary logical processor function assigned to it.

14

2

3

5

6

13121

14 16

FIGURE 5

PRECEDENCE GRAPH FOR PROCEDURE 1

q J

15

APPLICATION TASK

PHOST L-P/P MAP
I---
MESSAGE UTILITY

L-P-P BR LPP a-
IE

MAP MAE

- ,

is
U S A G U R

G U GUo o ® T E ET

I 4I L L.
I III
T T__ _

Y V
IALL

TABLE i TAi
SSTA LL-- SST T

(SUB-SCHEMA (SUB-SCHEMA
6 TASKS) TASKS)

I /(/\

FIGURE 6

LOGICAL AREA MOVEMENT

16

In order to allow the DDBXS to stop processing a pack prior to its

movement, the list of active areas on the pack is determined from the Device

Header List that is maintained by the back-end processor. For each area,

the list of logical host names is obtained from the ALL Table. The back-

end processor then accesses its Logical-to-Physical Processor Map to deter-

mine the host computers which must be sent the messages indicating an area

transfer.

The back-end data base software which controls the mounting of a new

pack must be cognizant of requirements stating that in order for a given

pack to be accessed some other pack (or packs) must also be attached to the

same processor. Such constraints could occur in the cases of multi-device

areas or for security or efficiency reasons.

The physical movement of a data base pack between back-end processors

results from carrying out the steps of Procedure 2. A pack shutdown utility

Ud is first executed on the sending back-end processor B . A pack mount

utilityU 0, is then executed on Br , the receiving back-end processor.

Procedure 2 (Physical Pack Movement)

1. The B operator activates pack shutdown utility, Ud.

2. U initiates steps 1 - 4,6,8-9, and 13 of Procedure 1 for each aread

on the pack.

3. U notifies the B operator that the pack may be moved.
ds

4. The B operator removes the pack.5

5. Br operator mounts the pack.

6. Br operator activates pack mount utility, U a

7. U initiates steps 10-12 and 14-16 of Procedure I for each area on the pack.

There are two types of task movement in a DDBNS; the transferring of an

application program between processors, and the interprocessor movement of

back-end software. Both cases can be considered as processor function

17

reassignment.

In the case of host function movement the only action required is a

change in the Logical-to-Physical Processor Hap in the network operating

system. The redefinition of the ability for appropriate processors to

access an area can also be accomplished by executing the DMCL compiler with

a modified HOSTS paragraph.

The back-end functions may only be transferred if the receiving pro-

cessor is linked to the storage device(s) containing the area. The

mechanisms for accomplishing the transfer are identical to the host

situation. Either the network operating system Logical-to-Physical Pro-

cessor Hap or the DMCL BACK-END sentence can be amended.

Thus as in the case of data movement, tasks (processor functions)

can be moved in a DDBMS with minimal overhead and with no alteration

required to user or DMIS software.* This statement is predicated upon the

portability of the data base zystem software. Given the state of the

industry, movement must be restricted to homogeneous machines for the

present.

One important fact concerning the relationship between logical and

physical names for physical entities (processors, devices) is that the

mapping can be one-to-one, many-to-many, one-tb-many, or many-to-one. A

one-to-many mapping indicates a multi-processor configuration or an area

spread across several devices. A processor or storage device can be

identified by several logical names, thus producing the many-to-one rela-

tionship. The many-to-many mapping is a merger of the two previously men-

tioned situations. The flexibility of the logical to physical mapping

provides the data base administrator with considerable latitude in the

distribution of the data base.

U l I I L , , . .'* -' _ : * - ,• ,

18

Figure 7 depicts a one-to-many device mapping. The area NAMES is spread

over three physical devices. The record occurrences, FRED, V IRG, and PAUL,

all reside on separate disk packs controlled by the same back-end processor.

The multi-device area concept is found in many commercially available data

base management systems.

A one-to-many processor mapping implies the existence of a multi-processor

back-end. A multi-processor back-end consists of several processors joined

via a memory-to-memory connection. Each processor has access to the areas

controlled by the back-end function shared by the processors. If a processor

in a multi-processor back-end configuration does not have a direct physical

connection, it requests that a processor having such a link perform the I/O

transfers. With a shared memory interprocessor connection, such requests

are performed at machine memory speeds. Figure 8 illustrates a multi-

processor back-end configuration. The concept of multi-processor back-end

machines is discussed by Lowenthal in Reference [5]. Figure 9 portrays a

many-to-many mapping which is realized by combining the configurations

shown in the two previous figures.

For a given distributed data base system, the range of a multi-processor

back-end configuration is limited by the network topology. A generalized

network such as MIMICS [4) is composed of a collection of machine clusters

joined together. Within each cluster several processor nodes linked via

high speed memory connections, (5 -10 Megabyte/sec). Figure 10 shows the

general topology of the HIMICS network.

The following rules apply to multi-processor back-ends:

1. The processors comprising a multi-processor back-end must be

members of the same cluster.

2. Areas ay not span clusters. As shown in Figures 8 thtulO,it is

VI.

19

HOST

BACK-END

FRED VIRG PAUL

FIGURE 7

MULTI-DEVICE AREA

20

HO0ST

BE2 BEl BE3

N ESWIVES CH

FRED KARENJEN
VIRG 7DEE TODD
PAUL RUTH HOWARD

4my
QRA I G
MA7E

FIGURE 8

MULTI -PROCESSOR BACK-END

21

HOST

V¢BE2 -- BE1 ---- BE3

, FRED VIRG

FIGORE 9

MULTI-DEVICE AREA WITH MULTI-PROCESSOR BACK-END

L A2-

22

CLUSTER I

CLU.S TER K

CLUSTER J

FIGURE 10

GENERAL TOPOLOGY OF MIMICS

23

not necessary for each node in a multi-processor back-end cluster to have

a communication link to a host computer (or a cluster of host computers).

The node with the communication link (BEI in Figures 8 and 9, for example)

functions as the master back-end for that multi-processor back-end configu-

ration. The master handles the communication operations and parcels out

the DUL commands to be executed by the individual back-end processors.

An analysis of the performance, security integrity, and economic

benefits of the multi-processor back-end concept has been performed by

Lowenthal [5].

B. The Inter-Process Communication System (IPCS) of MIMICS

Movement of (areas of) data In a DDBMS is accomplished via some inter-

process communication (message) utility which has the following functions:

1) It makes the topology of the network transparent to the application

program;

2) it makes data distribution transparent to the application program;

3) it synchronizes the tasks which exchange data to insure no data is

lost, garbled, or pilfered;

4) it manages the names of network tasks;

5) and finally, it transmits data and commands between tasks (appli-

cation program and DBMS tasks, for example). The concepts of the IPCS

commands available to a task level are provided in Figure 4.

The IPCS of'HIMICS is connection-based. That is, the general scenario

of IPCS usage by a task is as follows:

1. CONS.ECT (,.--

2. Exchange data using SEND and RECEIVE; exchange commands using

SEND COOAD and ACCEPT CO14AND; and WAIT on a particular function

completion when necessary

24

3. DISCONNECT(, ,---)

The CONECT/DISCONNECT functions establish and destroy data/command paths

between tasks. The SEND/RECEIVE functions exchange data. The IPCS syn-

chronizes the message SEND's from the source task and the RECEIVE's from

the destination task to assure proper space is allocated for the message.

The SEND_/ACCEPT_COW1AND functions allow commands to be exchanged between

user tasks without prior data space allocation necessary. This permits

user' tasks to exchange simple commands to establish a protocol for exchang-

ing messages. It also permits priority traffic for error or control

information to be exchanged. This is the mechanism used for movement of

areas in a transparent manner. Since all of the above SEND's and RECEIVE's

do not force the task to stop execution until completion (to provide over-

lap of execution and data exchange), the task may choose to WAIT until a later

tiu.e on a particular SEND or RECEIVE (event).

The general structure of the IPCS is shown in Figure 11. The appli-

cation program conceptually exchanges DML's and data/status with the DBHS

task. The User Envelope transmits these elements across a network as

data and commands. The User Envelope thus maps source and destination

tasks onto source and destination logical processors and then onto physical

processors via the L-P-P map and the ALL table. Thus the System Envelope

has the capacity to re-route DM.L's and data/status via a new mapping. The

Message System merely does the moveient of data between tasks which have

established a connection.

Figure 12 illustrates the method by which the movement of an area between

two back-end machines can be achieved in a manner transparent to an applica-

tion program. It is assumed the application program task (APT) and the DBMS

have an established connection. The general procedure, from the view of the

message system, to move an area is as follows:

25

PPLIATIO- - DML STATEMENTS

PROGRAM - - STATUS/DATA__ DBMS

-MESSAGES

USER - -c -NTC'oW USERUSE P RO0TOCEOL CSYVN C HR ON JIM;_
ENVELOPE ~ TO-ADCMAD

M1 E S S A 1 E

COMMANDS

FIGURE 11

LEVELS OF MIMICS PROTOCOL

V C%4
LU4Z SWu

-~~a c0i
I-- c

Li
9= 6% in

-Jv

w c;

w L

>2 0 0

Lu 0. L
LU ~L no si0

zO ~ 4

0 0

MiL 0 0

u z -w U)
0Z 1. z 0U

, WCO j Z CO CL
L~ E0 LU V)

4O u 0 ~J
UJ.4c 4u C4W 4 ~ ft

w w W- UJ~ x

U) 2,

w '/> IQ0

27

1) The User Envelopes exchange the desire (initiated from either

end) to DISCONnECT after a certain sequence of messages is complete.

2) Each does a DISCONNECT (QUIESCE). (These are synchronized by

the Message System.)

3) The AREA is transferred by a file transfer protocol 161 via a

connection between tasks U and U . (See Figure 6.)s r

4) The User Envelopes on the Host and Back-End 2 (BE2) then connect

as follows:

The Host User Envelope requests a network task name for DBMS task

on BE2 from the Network Resource Controller (NRC) on the Host. The

NRC's of all processors are fully connected. Thus this request is

made of the NRC on BE2. It responds with the task name. The User

Envelope then connects to the BE2 User Envelope and D4L's and data/

status flow between the Host APT and the BE2 DBMS task.

It is important to note that NRC must access only the L-P-P map. It should

be clear from Figure 12 that the Host APT does not participate in the move-

ment or knowledge of the movement of the AREA other than by observing some

performance change.

V. Structure of Host and Back-End Software

A host computer in a DDBMS musc contain software to execute application

programs, to select the proper back-end for data base functions, and to

comunicate with the back-end processor. In order to meet these ends, a

host must have a software organization similar to that depicted in Figure

13. The Logical-to-Physical Processor Map (L-P-P Map) is simply an array

of physical Identifiers indexed by logical names. As mentioned in prior

sections, this map is used in the selection of the back-end processor.

The Inter-Process Comaunicacion System (IPCS) 141 serves as a generalized

--tocmunication system for the data base network.

28

USER PROGRAM K

USER WORKING SYSTEM DBMS 0
----AREA ,_ LOCATONS . INTERFACE P

E

USER PROGRAM 1 T

USER WORKING SYSTEMS I
AREA LOCATIONS INTERFACE NIG

SUB- SUB-
SCHEMA SCHEMA S

1 M y

DBMS T

AREA LOGICAL ILOGICAL TO E

LOCATION TABLES ,SYSTEM LOCATIONS PHYSICAL PROC-FSSQ)R MAP

IPCS

(INTER-PROCESSOR COMMUNICATION SYSTEM)

FIGURE 13

HOST SOFTWARE ORGANIZATION

"7 - - - ...

29

A back-end processor must hold the sub-schema and DMCL Tables for

each area in its domain. Due to the possibility of multiple back-end

participation in DML execution, each back-end processor must contain

complete ALL Tables for all sub-schemascontaining areas managed by that

machine. The back-end must also contain the Logical-to-Physical Processor

Hap in order to determine physical processor identification. As shown

in Figure 14, the back-end software must also include a Device Header

List (b.H. List) which indicates the contents of the secondary storage

units. The Device Header List contains a linked list of areas with each

list headed by a device indicator name.

It is important to note that a single machine may be both a host and

back-end processor. In that situation, the software shown in both Figures

13 and 14 must reside upon that machine. If a processor assumes more than

one logical host or back-end function, the DMCL Tables and sub-schemas for

each logical processor function mist be stored in the memory of the machine.

Figure 15 illustrates the software required on processor P1 of Figure 3.

PI has two back-end functions, B1 and B2, and one host function, H1 ,

associated with it.

VI. The Data Dictionary

Each processor in a DDBMS may require access to any schema, sub-schema,

or ALL Table. Copies of this information are maintained in the data

dictionary. When'a DBMS application task is loaded onto a host processor,

its associated sub-schema and ALL Tables are obtained from the data dic-

tionary. The data dictionary also holds the potential Logical-to-Physical

Processor Map which indicates those processom permitted to assume a particular

logical name. This list is used whenever an application program requests an

orea for which there is no active processor performing that back-end function.

The general structure of a DDBMS data dictionary is illustrated in Figure 16.

30

IPCs 0
P

(INTER-PROCESSOR COMMUNICATION SYSTEM) E
R

ILOGICAL TO A
BUFFERS !PHYSICAL T

PROCESSOR MAPT
~I

N
DBMS G

ALL TABLE DH. LIST
y

SUB- SUB- S
SCHEMA SCHEMA T
1 IE

__ _EM

DML DML
TASK TASK
i J

FIGURE 14

BACK-END SOFTWARE ORGANIZATION

.I
• = __ •i "- lr 4-

31

USER PROGRAM K__

UWA SYSTEM LOCATIONS I DBMS INTERFACE
0

USER PROGRAM I E

UWA SYSTEM LOCATIONS DBMS INTERFACE R

,NiB-SCHEMA 1(H1) .SUB-SCHEMA M(H)T

DBMS (HOST)

ALL TA LE (INCLUDES ENTRIES SYSTEM LOCATIONS G
FOR B1, B2, H1)

SUB-SCHEMA 1(B1) 1 . , . SUB-SCHEMA K(BI) S

SUB-SCHEMA 2) . . . SUB-SCHEMA I(B2) S

D.H. LIST L-P-P MAP E
m

DML TASKi I DML TASK J

DBMS (BACK-END)

BUFFERS

IPCS

FIGURE 15

SOFTWARE ORGANIZATION FOR A

PROCESSOR WITH MULTIPLE FUNCTIONS

32

SCHEMA 1

SCHEMA OBJECT MODULE

ALL TABLE
SCHEMA

, SUB-SCHEMA 1

SUB-SCHEMA OBJECT MODULEENTRY
o
0

SUB-SCHEMA K

SUB-SCHEMA OBJECT MODULE

SCHEMA 2 ENTRY

S

SCHEMA M ENTRY

POTENTIAL LOGICAL TO PHYSICAL

PROCESSOR MAP

FIGURE 16

DATA DICTIONARY ORGANIZATION

- ', ",,, i ' ... , i' " I

33

The exact mechanism of implementing the data dictionary can vary with

r the structure of the underlying computer network. The dictionary must reside

on a high speed secondary storage device for rapid access. The data dictionary

is used generally for query with little update. Therefore, multiple copies

of the data dictionary may be maintained for the sake of reliability and more

rapid reference. In certain environments, it may be desirable to partition

the data dictionary into sub-dictionaries which contain information on data

residing in particular sections of the network.

VII. Conclusion

This paper has presented a mechanism for the distrib~lon of a

CODASYL-type data base management syitem in a manner that is transparent

to the application program. The software structure presented herein

presupposes an underlying computer network with the necessary hardware

and software to allow interprocessor communication via a standardized

message system. The basis for distribution in the DDBHS is the ALL Table

which provides information on the location of each data base area.

The mechanisms detailed here provide a DDWIS communication facility

that is relatively easy to realize. However, many of the problems of

distributed data systems, as outlined by Fry and Sibley (7], still

require practical solutions. The dilemmas posed by deadlock, backup.

recovery, and security are extremely complex. Another forwidable stumb-

ling block for distributed data base systems is the general lack of port-

ability and compatbility within both the hardware and software environments.

The system described here could be implemented with moderate effort on

homogeneous networks. For heterogeneous networks, advances in soft-

ware portability and standardized communication protocols are required.

Progress is being made in these areas although it is hampered somewhat

Sy the marketing philosophy of "locking the user in" to a vendor's

-product line.

_J

*jI 34

Bibliography

1. CODASYL COBOL Journal of Development, Dept. of Supply and Services,

Material Data Management Branch, Ottawa, Ontario KIA OS5, (revised

to) June, 1976.

2. CODASYL Data Description Language Journal of Development, Document

C1362:113, U.S. Covernment Printing Office, Washington, D.C., 1973.

3. Maryanski, F.J., et al., "A Minicomputer Based Distributed Data Base

System, Proc. IEEE-XBS Symposium on Trends and Application 1976:

Micro and Mini Systems, May, 1976, pp. 113-118.

4. Wallentine, V.E., "MIMICS-The Capabilities to be Developed", Computer

Science Dept., Kansas State University, Manhattan, KS. 66506, May, 1976.

5. Lowenthal, E.I., "The Backend Computer", MRI Systems Corp., P.O. Box 9968,

Austin, Texas 78766, Apr., 1976.

6. Wallentine, V.E., et al., "Progress Report on Functionally Distributed

Computer Systems Developemnt: Software and Systems Structure" TR CS77-4,

Computer Science Dept., Kansas State University, Manhattan, KS. 66506,

Dec. 1976.

7. Fry, J.P. and Sibley, E.H., "Evolution of Data-Base Management Systems",

Computing Surveys, Vol. 8, No. 1, May, 1976, pp. 7-42.

* *4

